
Raspberry Pi part n° 4

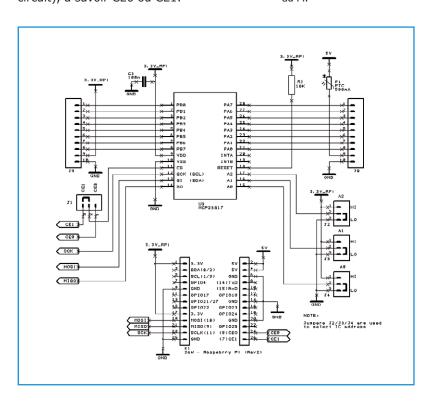
Hissez le (S)PI

Après avoir vu comment utiliser l'interface série UART présente sur le connecteur d'extension du Raspberry, nous nous intéressons ici à son interface série SPI.

Tony Dixon (Royaume-Uni)

L'interface SPI

Trois interfaces série sont disponibles depuis le connecteur d'extension du Raspberry : UART (cf. part n° 3), I²C, et SPI (*Serial Peripheral Interface*) [1].


Comme le montre le brochage du connecteur d'extension (**tableau 1**), l'interface SPI est accessible depuis les broches 19 (MOSI), 21 (MISO), et 23 (SCK). Les deux signaux SCE (*SPI Chip Enable*) sont quant à eux présents sur les broches 24 (CE0) et 26 (CE1).

SPI permet d'établir une interface entre le Raspberry et d'autres périphériques avec un nombre de broches minimal et selon une configuration maître/esclave. Dans nos exemples, le PI sera toujours le maître SPI. D'un point de vue matériel, l'interface SPI a normalement besoin de quatre signaux pour fonctionner correctement : Master Out, Slave In (MOSI), Master In, Slave Out (MISO), Serial Clock (SCK) et Chip Enable (CEx).

Duplicateur de ports d'E/S

Pour ce projet, nous allons augmenter le nombre de ports GPIO du Raspberry à l'aide du duplicateur de ports MCP23S17 à 16 bits de Microchip. La **figure 1** montre le schéma d'un MCP23S17 relié à l'interface SPI du Raspberry Pi. Le cavalier J1 permet de choisir entre l'un des deux signaux SPI *chip enable* (sélection de circuit), à savoir CE0 ou CE1.

Figure 1. Schéma de principe du duplicateur MCP23S17 relié

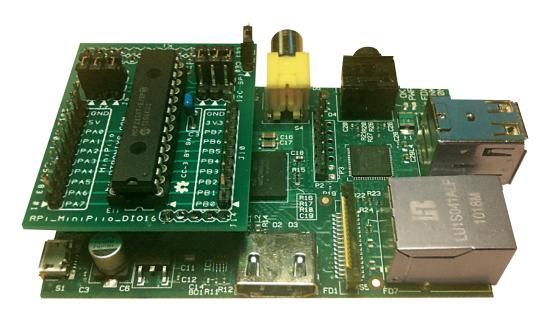


Figure 2. Pi et le MCP23S17 sur une carte MiniPiio.

La **figure 2** montre notre configuration matérielle. Comme vous le voyez, nous avons assemblé notre interface MC23S17 sur une petite carte d'extension [3].

Installation du module Python pour SPI

Nous allons de nouveau recourir au langage Python pour programmer nos exemples. L'interpréteur Python est installé par défaut dans la distribution Raspbian, mais aucune bibliothèque Python pour SPI n'est fournie d'avance. Commençons donc par télécharger et installer le module Python pour SPI appelé py-spidev [2]. Entrez les commandes suivantes dans une console Lxterminal (fig. 3):

cd ~

git clone git://github.com/doceme/
py-spidev

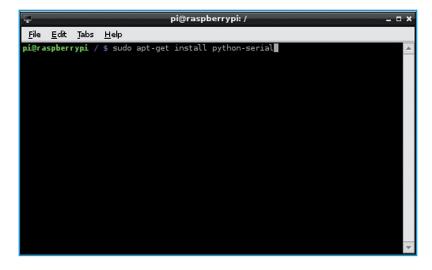
cd py-spidev/

sudo python setup.py install

(ou :
sudo apt-get install git-core
 python-dev
sudo apt-get install python-pip
sudo pip install spidev)

Puisque l'interface SPI matérielle est désactivée par défaut, nous devons l'activer en

modifiant le fichier appelé *blacklist*. Ouvrons ce fichier avec par exemple l'éditeur nano :


sudo nano /etc/modprobe.d/raspiblacklist.conf

Trouvez la ligne qui contient **blacklist spibcm2708**, commentez-la en ajoutant le caractère # au début de la ligne, puis sauvegardez le fichier. Pi doit être redémarré pour que le changement soit pris en compte :

sudo reboot

Lancez une nouvelle session LXTerminal et, pour vérifier que vous avez bien deux fichiers de périphériques SPI (un pour chaque signal SPI *Chip Select*), entrez :

Figure 3. LXTerminal.


```
ls /dev/spi*
```

La sortie de cette commande devrait être :

```
/dev/spidev0.0
/dev/spidev0.1
```

Programme d'exemple : mcp23s17.py

Maintenant que spidev est installé, nous pouvons tester l'interface SPI avec un court programme chargé d'allumer des LED reliées au duplicateur de ports GPIO.

Double-cliquez sur l'icône IDLE du bureau pour lancer l'EDI et la console Python (**fig. 4**).

Dans le menu *File*, sélectionnez *New Window* pour créer un nouveau programme dans l'éditeur.

Copiez le programme du **listage** dans l'éditeur (**fig. 5**).

Sauvegardez le programme saisi. Retournez ensuite dans la console Lxterminal, et entrez la commande suivante pour le rendre exécutable :

```
chmod +x mcp23s17.py
```

Et pour exécuter ce programme :

```
sudo ./mcp23s17.py
```

(130211 – version française : Hervé Moreau)

```
Python Shell

File Edit Shell Debug Options Windows Help

Python 2.7.3 (default, Jan 13 2013, 11:20:46)
[GCC 4.6.3] on linux2
Type Copyright", "credits" or "license()" for more information.
>>>
```

Figure 4. L'environnement IDLE pour Python.

```
#Untitled# _ D X

File Edit Format Run Options Windows Help

#!/user/bin/python
inport serial

ser = serial.Serial('/dev/ttyAMAO', 115200, timeout=1)
ser.write ("Hello Elektor")
ser.close ()
```

Figure 5. L'éditeur de IDLE.

```
Listage
#!/usr/bin/python

import spidev
import time

spi = spidev.SpiDev()
spi.open(0,0)

while True:
    spi.xfer([0,0,0]) # turn all lights off
    time.sleep(1)
    spi.xfer([1,255,254]) # turn all lights on
    time.sleep(1)
```

commandes spidev				
spi.open (0,0)	ouvre le bus SPI 0 en utilisant CE0			
spi.open (0,1)	ouvre le bus SPI 0 en utilisant CE1			
spi.close ()	déconnecte l'objet de l'interface			
spi.writebytes ([tableau d'octets])	écrit un tableau d'octets dans le périphérique SPI			
spi.readbytes (len)	lit <i>len</i> octets reçus du périphérique SPI			
spi.xfer2 ([tableau d'octets])	envoie un tableau d'octets en laissant le signal CEx actif en permanence			
spi.xfer ([tableau d'octets])	envoie un tableau d'octets en désactivant et réactivant le signal CEx à chaque octet transmis			

Liens

- [1] www.raspberrypi.org
- [2] www.github.com/doceme/py-spidev
- [3] www.dtronixs.com

Tableau '	1 Prochag	e du connec	tour d'av	tancian
Tableau .	L. Di Uciiay	e uu commec	teui u ex	rension

Nom de la broche	Fonction	Autre fonction	RPi.GPIO
P1-02	5,0V	-	-
P1-04	5,0V	-	-
P1-06	GND	-	-
P1-08	GPIO14	UART0_TXD	RPi.GPIO8
P1-10	GPIO15	UART0_RXD	RPi.GPIO10
P1-12	GPIO18	PWM0	RPi.GPIO12
P1-14	GND	-	-
P1-16	GPIO23		RPi.GPIO16
P1-18	GPIO24		RPi.GPIO18
P1-20	GND	-	-
P1-22	GPIO25		RPi.GPIO22
P1-24	GPIO8	SPIO_CEO_N	RPi.GPIO24
P1-26	GPIO7	SPIO_CE1_N	RPi.GPIO26

Nom de la	Révision 1 de la carte		Révision 2 de la carte	
broche	Fonction	Autre fonction	Fonction	Autre fonction
P1-01	3,3V	-	3,3V	-
P1-03	GPIO0	I2C0_SDA	GPIO2	I2C1_SDA
P1-05	GPIO1	I2C0_SCL	GPIO3	I2C1_SCL
P1-07	GPIO4	GPCLK0	GPIO4	GPCLK0
P1-09	GND	-	GND	-
P1-11	GPIO17	RTS0	GPIO17	RTS0
P1-13	GPIO21		GPIO27	
P1-15	GPIO22		GPIO22	
P1-17	3,3V	-	3,3V	-
P1-19	GPIO10	SPI0_MOSI	GPIO10	SPI0_MOSI
P1-21	GPIO9	SPI0_MISO	GPIO9	SPI0_MISO
P1-23	GPIO11	SPI0_SCLK	GPIO11	SPI0_SCLK
P1-25	GND	-	GND	-

Note : I2C0_SDA et I2C0_SCL (GPI00 & GPI01), ainsi que I2C1_SDA et I2C1_SCL (GPI02 & GPI03) sont dotées de résistances de rappel de 1,8 k Ω au 3,3 V.